IALL 10.5 Lab Notes - v. 1.0.6

Partlist

Capacitores

3	C1, C2, C3	100uF x 450V
1	C4	100uF x 50V
1	C5	10uF x 50V
3	C6, C7, C8	100nF x 350V
1	C9	100pF

Semicondutores

2 D1, D2	1N4007
----------	--------

Resistências

1	R1	2.2k x 1W
1	R2, R12	220k x 1W
1	R16	68k x 1W
2	R7, R8	470k x 1W
3	R9, R13, R15	1M
1	R10	1.5k x 2W
1	R11	220k x 2W
1	R3	1.5k x 2W
1	R4	390 ohms x 2W
2	R5, R6	10k x 2W
1	R14	330 ohms x 5W

Válvulas

2	V1, V2	ECL82

Tranformador

Força

Primário: 0+127+220V

Secundário: 190+190V @ 120mA, 3.15+3.15V @ 2A

Audio

Primário: PP: 10.000 Ohms, com derivação central

Secundário: 0+4+8 Ohms

Potência: 11 watts

Medições

EL82As medidas abaixo foram efetuadas com válvulas RFT ECL82 instaladas:

Ponto	Voltagem	Tipo
PT-1 PT-2	186 186	AC AC
C1 C2 C3	237 214 176	
V1 – pino 1 V1 – pino 2 V1 – pino 3 V1 – pino 4 V1 – pino 5 V1 – pino 6 V1 – pino 7 V1 – pino 8 V1 – pino 9	0 14.77 0 3,1 3,1 212 206 1,46 106	AC AC
V2 – pino 1 V2 – pino 2 V2 – pino 3 V2 – pino 4 V2 – pino 5 V2 – pino 6 V2 – pino 7 V2 – pino 8 V2 – pino 9	0 14.77 0 3,1 3,1 211 206 1,46 98	AC AC

Pelas medidas acima podemos calcular uma dissipação de anodo de 3.5 Watts, ou seja, bem abaixo dos 7W correspondentes a máxima dissipação de anodo de uma ECL82.

A fórmula para obtenção da dissipação de anodo (Wa), para este circuito é:

$$Wa = (V_a - V_k) \times \left[\frac{2 \times V_k}{R_k} - \frac{V_{C2} - V_{g2}}{R_{g2}}\right]$$

Onde:

Va – Tensão de Anodo do pentodo;

Vk – Tensão do catodo do pentodo;

Vg2 – Tensão na grade 2 do pentodo;

VC2 – Tensão no polo positivo do capacitor C2;

Rk – Resistência de catodo;

Rg2 – Resistência de anodo.

6F3P

As medidas abaixo foram efetuadas com a válvulas 6F3P russa instaladas.

Ponto	Voltagem	Tipo
PT-1 PT-2	184,5 184,5	AC AC
C1 C2 C3	237 213 175	
V1 – pino 1 V1 – pino 2 V1 – pino 3 V1 – pino 4 V1 – pino 5 V1 – pino 6 V1 – pino 7 V1 – pino 8 V1 – pino 9	0 14,92 0 3,1 3,1 211 203 1,39 102	AC AC
V2 – pino 1 V2 – pino 2 V2 – pino 3 V2 – pino 4 V2 – pino 5 V2 – pino 6 V2 – pino 7 V2 – pino 8 V2 – pino 9	0 14,92 0 3,1 3,1 210 204 1,39 110	AC AC

Novamente podemos calcular a dissipação de anodo, ou seja, 3.5 Watts.

Sugestões do Eduardo para o IALL 10.5

O Eduardo, participante do forum fez as seguintes sugestões para melhor adequação do IALL 10.5, copiadas para cá com os sues comentários:

- 1. Remover o capacitor C5. No caso do inversor em gangorra, você perde uma porção importante do equilíbrio que o catodo comum pode proporcionar ao fazer o desacoplamento.
- 2. Alterar o resistor R1 para 820R. Isso vai deixar os triodos numa posição mais confortável de trabalho.
- 3. Alterar R13 e R15 para 82K. Isso compensa o efeito Miller dentro da faixa de áudio. 1M só dá certo com a 12AX7 que tem uma grade diminuta.
- 4. Alterar R7 e R8 para 680K. Como o resistor de grade entra na carga do inversor, melhor usar o valor máximo admitido pelo pentodo.
- 5. Alterar R4 para 330R.
- 6. Alterar C4 para 1000uF/16V. Não precisa de 50V naquele ponto e 100uF é pouco.
- 7. Remover R5. Só um de 10K está de bom tamanho. E R6 pode ser de 1/8W. A corrente no trecho é muito pequena. Não justifica 2W.
- 8. Reduzir C3 para 10uF (pode deixar 100uF, mas é exagero)

Participações como a do Eduardo são sempre bem vindas e podem realmente surtir efeitos positivos no resultado final. Aproveito o espaço para agradecê-lo novamente.

Das alterações acima, as que eu mais aprecio, são as que modificam os valores de R4, C3 e da capacitância de C4 (alterações 5, 6 e 8).

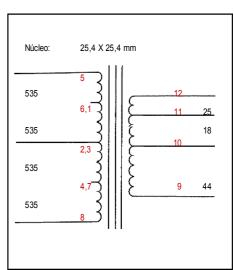
As que eu não recomendo é a modificação da tensão de isolamento de C4.

Sugestão de Projeto do Trafo de Saída

O projeto abaixo corresponde a uma sugestão de como pode ser enrolado um trafo de saída para este projeto. Notem que nele há a preocupação em proporcionar uma equalização das proporções geométricas dos enrolamentos, sem recorrer ao uso de enrolamentos bifilares.

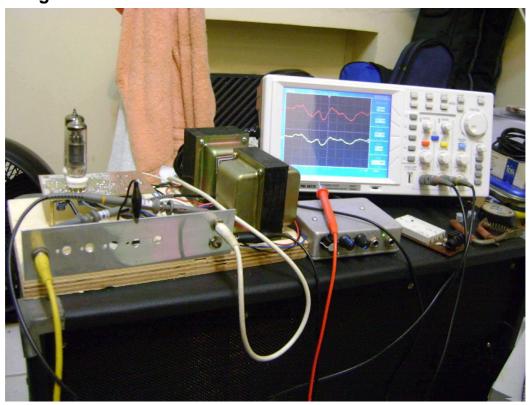
São nove camadas começando pelo secundário. Uma vez enrolados todos os filamentos, o trafo pode ser "fechado", conectando-se os secundários em paralelo e os primários em série, seguindo a ordem dos filamentos mostrados na figura.

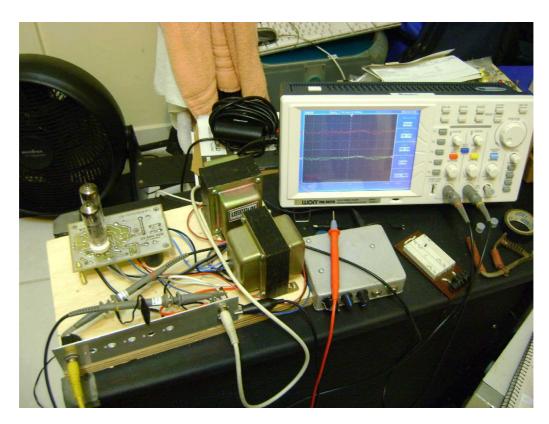
A tabela mostra cada um dos enrolamentos, com informações sobre o calibre dos fios, número de voltas e a numeração de cada filamento.

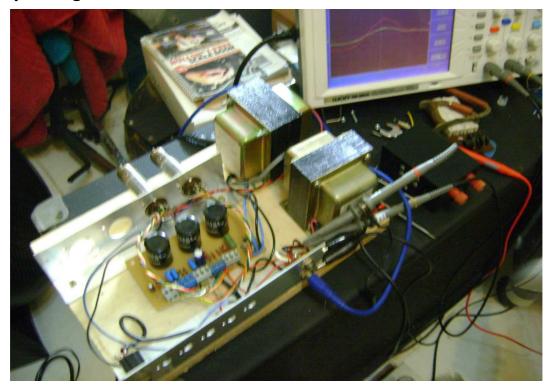

Siga como exemplo o enrolamento 2 que corresponde ao uma parte do primário. Ele irá compor os filamentos 1 e 2. Começa no filamento 1 e termina no filamento 2.

No "fechamento" do trafo, os anodos das válvulas serão conectados aos filamentos de número 5 e 8, enquanto os CT é conectado aos filamentos 2 e 3 conectados juntos. Os demais filamentos, 6 e 1 conectados juntos e 4 e 7 (também conectados juntos), são conectados e deixados dentro do trafo.

Novamente, os filamentos do secundário são conectados em paralelo.


Prim Sec	33 AWG 22 AWG	44 voltas	18 voltas	535 voltas 535 25 voltas 44+18+25


Enr.	Braço	Fio	Voltas	Fil. Prim	Fil. Sec.	
1	Sec	22 AWG	44+18+25		9,10,11,12	
2	Prim	33 AWG	535	1,2		Prim: em série
3	Sec	22 AWG	44+18+25		9,10,11,12	
4	Prim	33 AWG	535	3,4		Sec: em paralelo
5	Sec	22 AWG	44+18+25		9,10,11,12	
6	Prim	33 AWG	535	5,6		
7	Sec	22 AWG	44+18+25		9,10,11,12	
8	Prim	33 AWG	535	7,8		
9	Sec	22 AWG	44+18+25		9,10,11,12	


Fotos

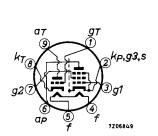
Protótio Big Louis

Protótipo Jorge R

TRIODE-OUTPUT PENTODE

The triode section is intended for use as frame oscillator and A.F. amplifier. The pentode section is intended for use as frame output tube and A.F. power amplifier.

QUICK REI	FERENCE DATA		
Triode section			
Anode current	I_a	3.5	mA
Transconductance	S	2.2	mA/V
Amplification factor	μ	70	-
Pentode section			
Anode peak voltage	V _{ap} max	2.5	kV
Anode current	I_a	41	mA
Transconductance	S	7.5	mA/V
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	9.5	-
Output power	W_{o}	3.5	W


HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage Heater current $\frac{V_f}{I_f} \qquad \frac{6.3 \quad V}{780 \quad mA}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

ECL82

CAPACITANCES			
Triode section			
Anode to all except grid	$C_{a(g)}$	4.3	pF
Grid to all except anode	Cg(a)	2.7	pF
Anode to grid	Cag	4.4	pF
Grid to heater	$c_{ m gf}$	max. 0.1	pF
Pentode section			
Anode to all except grid No.1	$C_{a(g_1)}$	8.0	pF
Grid No.1 to all except anode	$C_{g_1(a)}$	9.3	pF
Anode to grid No.1	C_{ag_1}	max. 0.3	pF
Grid No.1 to heater	c_{g_1f}	max. 0.3	pF
Between triode and pentode sections			
Anode triode to grid No.1 pentode	C_{aTg_1P}	max. 0.02	pF
Grid triode to anode pentode	C_{gTaP}	max. 0.02	pF
Grid triode to grid No.1 pentode	$C_{g}T_{g_{1}}P$	max.0.025	pF
Anode triode to anode pentode	C_{aTaP}	max. 0.25	pF
TYPICAL CHARACTERISTICS			
Triode section			
Anode voltage	v_a	100	V
Grid voltage	v_g	0	V
Anode current	I _a	3.5	mA
Transconductance	S	2.2	mA/V
Amplification factor	μ	70	-
Pentode section			
Anode voltage	V_a	170	V
Grid No.2 voltage	$v_{\mathbf{g_2}}$	170	V
Grid No.1 voltage	v_{g_1}	-11.5	V
Anode current	I_a	41	mA
Grid No.2 current	I_{g_2}	9	mA
Transconductance	S	7.5	mA/V
Amplification factor	$\mu_{g_2g_1}$	9.5	_
Internal resistance	Ri	16	$\mathbf{k}\Omega$

OPERATING CHARACTERISTICS

Triode section as A.F. amplifier

0.22	$M\Omega$
3	$M\Omega$
0.68	$M\Omega$
0 170	v
2 2.7	kΩ
0 220	$k\Omega$
2 0.43	mA
2 51	-
6 25	v_{RMS}
· 20	212120
6 2.3	%
	<u>%</u>
	% MΩ
	% MΩ MΩ
6 2.3	% MΩ MΩ MΩ
0 170	% MΩ MΩ MΩ
6 2.3 0 170 0 0	% MΩ MΩ MΩ V
6 2.3 0 170 0 0 0 220	% MΩ MΩ MΩ V Ω
6 2.3 0 170 0 0 0 220 6 0.50	% MΩ MΩ MΩ V Ω kΩ
	3 0.68 0 170 2 2.7 0 220 2 0.43

MICROPHONY AND HUM

The triode section can be used without special precautions against microphony and hum in circuits in which an input voltage of minimum 10 mVRMS is required for an output of 50 mW of the output stage. Z_g (50 Hz) = 0.25 M Ω .

¹⁾ Measured at small input voltage.

²⁾ At lower output voltages the distortion is proportionnally lower.

³⁾ At lower output voltages down to 5 VRMS the distortion is approximately constant. At values below 5 VRMS the distortion is approximately proportional to $V_{\rm O}$.

OPERATING CHARACTERISTICS

Pentode section

Supply voltage	$V_{ba} = V_{bg2}$	2	200			272		V
Grid No.2 series res (non-decoupled)	sistor R _{g2}		470			2200		Ω
Cathode resistor	R_k		330			650		Ω
Load resistance	R $_{a}_{\sim}$		4.5			8		$k\Omega$
Grid No.1 driving vo	ltage V _i	0	0.66	6.7	0	0.9	9.5	v_{RMS}
Anode current	I_a	35		37	28		27	mA
Grid No.2 current	I_{g_2}	7.8		13.3	6.5		10.8	mA
Output power	Wo	0	0.05	3.3	0	0.05	3.5	W
				10			10	%

A.F. power amplifier, class AB, two tubes in push-pull

Anode supply voltage	v _{ba}	20	00	25	50	V
Grid No.2 supply voltage	v_{bg_2}	20	00	20	00	V
Common cathode resistor	Rk	17	70	22	20	Ω
Load resistance	R _{aa} '∼	4.	.5	1	.0	$\mathbf{k}\Omega$
Grid No.1 driving voltage	V_{i}	0	14.2	0	12.5	V _{R MS}
Anode current	I_a	2x35	2x42.5	2x28	2x31	mA
Grid No.2 current	I_{g_2}	2x8	2x16.5	2x5.8	2x13	mA
Output power	Wo	0	9.3	0	10.5	W
Distortion	d_{tot}	-	6.3	-	4.8	%

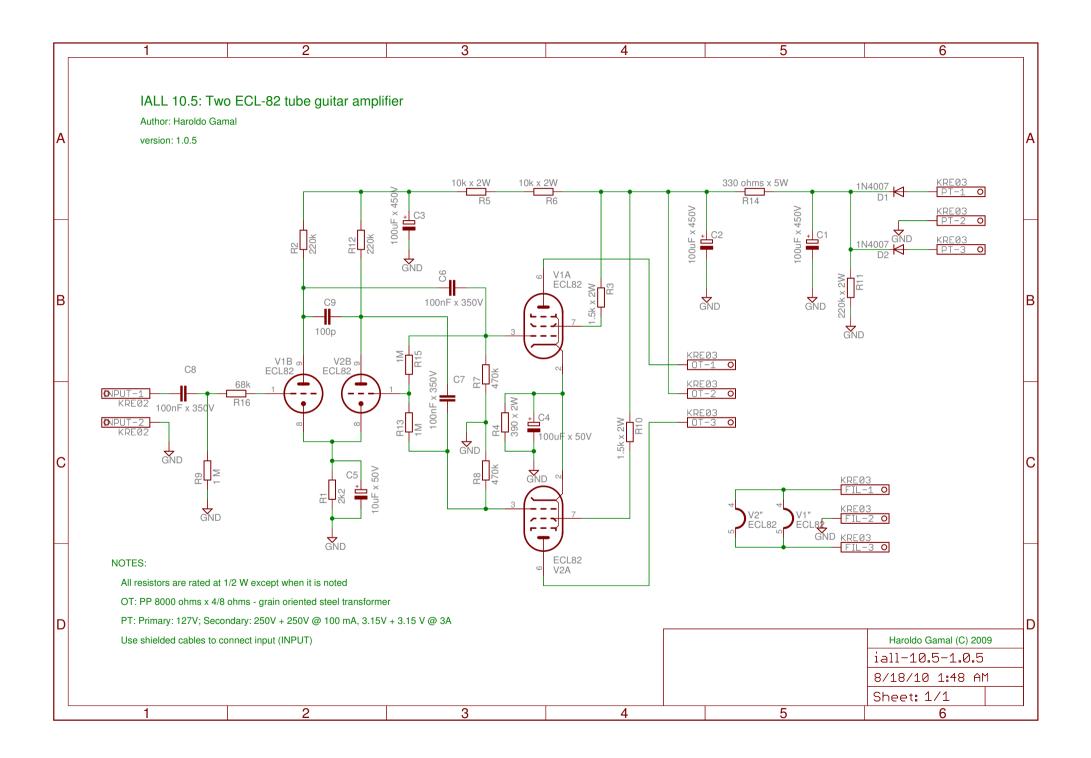
Frame output application

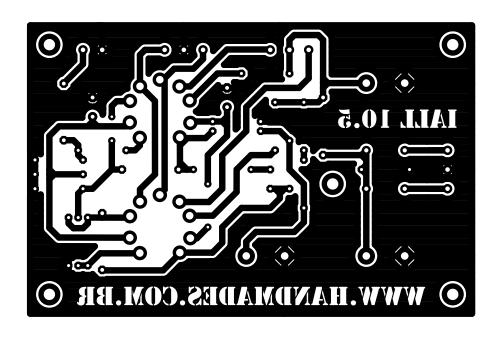
The circuit should operate satisfactorily with a peak anode current I_{ap} = 85 mA at V_a = 50 V, V_{g_2} = 170 V, V_f = 6.3 V. The minimum available I_{ap} at end of life is;

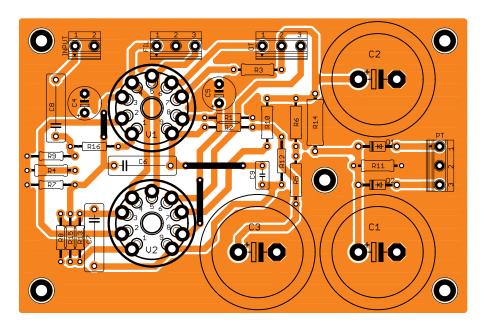
70 mA at
$$V_a$$
 = 50 V, V_{g_2} = 170 V, V_f = 5.5 V 80 mA at V_a = 50 V, V_{g_2} = 190 V. V_f = 5.5 V.

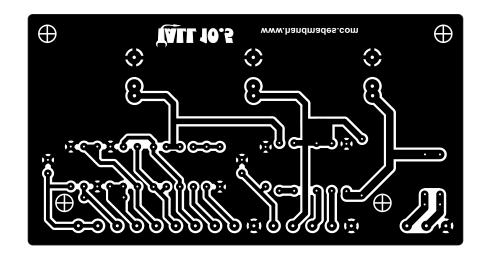
LIMITING VALUES (Design centre rating system)

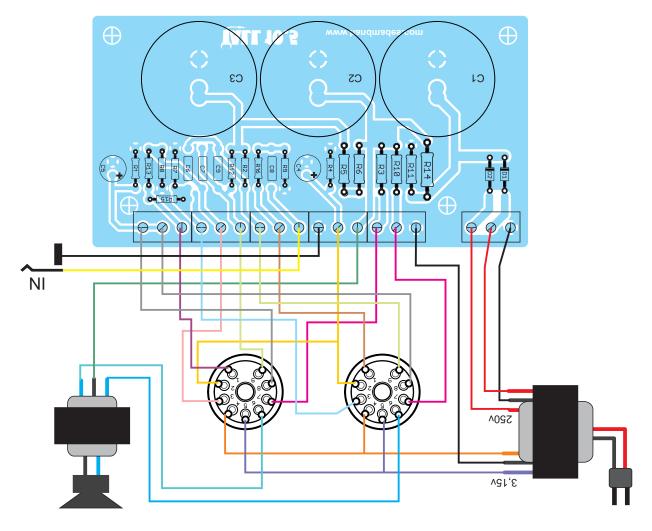
Triode section			
Anode voltage	v_{a_0}	max. 550	V
	v_a	max. 300	v
Anode peak voltage	v_{a_p}	max. 600	V ¹)
Anode dissipation	W_a	max. 1	W
Cathode current, average	I_k	max. 15	mA
peak	I_{k_p}	max. 100	mA ¹)
Grid resistor for fixed bias	$R_{f g}$	max. l	МΩ
for automatic bias	Rg	max. 3	$M\Omega$
Grid impedance at 50 Hz	z_g^s	max. 0.5	$M\Omega$
Cathode to heater voltage	v_{kf}	max. 100	v
Pentode section			
Anode voltage	v_{a_0}	max. 550	V
	va	max. 300	v
Anode peak voltage, positive	v_{a_p}	max. 2.5	kV 1)
negative	-v _{ap}	max. 500	V
Anode dissipation	11/	F	111
for frame ouput application for A.F. output application	W _a W _a	max. 5	W W
Grid No.2 voltage	•		v
Office No. 2 voltage	$v_{ m g_{2o}} \ v_{ m g_{2}}$	max. 550	v V
Grid No.2 dissipation, average	$\mathbf{w_{g_2}}$	max. 2	w
peak	$\mathbf{w_{g_{2p}}}$	max. 3.2	W
Cathode current	I _k	max. 50	mA
Grid No.1 resistor			
for fixed bias	R_{g_1}	max. 1	ΜΩ
for automatic bias	R_{g_1}	max, 2	MΩ
Cathode to heater voltage	v_{kf}	max. 150	V


For curves of the ECL82 please refer to PCL82


¹⁾ Max. pulse duration 4% of a cycle with a maximum of 0.8 msec.




ECL82


page	sheet	date
1	1	1969.12
2	2	1969.12
3	3	1969.01
4	4	1969.12
5	5	1969.01
6	FP	1999.08.15

